Xms specifies the initial memory allocation. Xmx sets the maximum memory allocation.

For a regional collector, like G1GC or Shenandoah, the pre-allocate the memory because they divide the heap in sections.

On the other hand, the ParallelGC, which is a generational collector – will divide the heap in generations: young, survivor, tenure generation.

But interestingly, ParallelGC will not pre-allocate the memory and as consequence one could cheat the memory and set a Xmx and Xms higher than the memory available in the box, on the example below it has only 2Gb available:

#grep MemTotal /proc/meminfo
MemTotal:        2000000 kB <-------- 2Gb
$JAVA_HOME/bin/java -Xmx20G -Xms2520m -Dfoo=example -XX:+PrintFlagsFinal GetValue <--- just prints string: Running Example
Running example

In contrast to G1/Shenandoah, which will pre-allocate/allocated at the start directly and it will crash right away:

$JAVA_HOME/bin/java -XX:+ShenandoahLogDebug -Xmx20G -Xms1700m -XX:+UseG1GC -Dfoo=example GetValue
OpenJDK 64-Bit Server VM warning: INFO: os::commit_memory(0x00000002c0000000, 1782579200, 0) failed; error='Cannot allocate memory' (errno=12)
# There is insufficient memory for the Java Runtime Environment to continue.
# Native memory allocation (mmap) failed to map 1782579200 bytes for committing reserved memory.
# An error report file with more information is saved as:
# /root/test_openjdk8_shenandoah_bug/test_application/hs_err_pid28074.log <------------------------------------------------------ crash log with insufficient memory
$JAVA_HOME/bin/java -XX:+ShenandoahLogDebug -Xmx20G -Xms1600m -XX:+UseG1GC -Dfoo=example GetValue
Running Application <------------------------------------------------------------------------------------------------------------ using Xms as 1.6Gb maximum

But of course, eventually setting a higher xms/xmx than the max memory available on the box it will crash, even if it is not pre-allocated/allocated in the start of the JVM.



The usage of this JVM flag is for as memory checks or checks on JNI functions.

This flag sometimes, depending on the function, it shows many warnings.

Check:jni, helps to debug applications that use the Java Native Interface (JNI).

java -Xcheck:jni -verbose:jni TestJNI
 execve("/jdk-11.0.1/bin/java", ["/jdk-11."…, "-Xcheck:jni", "-verbose:jni", "TestJNI"], 0x7ffd7b68e388 /* 72 vars */) = 0
 brk(NULL)                               = 0xb48000
 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fda7bdff000
 readlink("/proc/self/exe", "/jdk-11."…, 4096) = 44
 access("/etc/ld.so.preload", R_OK)      = -1 ENOENT (No such file or directory)
 open("/jdk-11.0.1/bin/../lib/jli/tls/x86_64/libz.so.1", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
 stat("/jdk-11.0.1/bin/../lib/jli/tls/x86_64", 0x7fff832f29b0) = -1 ENOENT (No such file or directory)
 open("/jdk-11.0.1/bin/../lib/jli/tls/libz.so.1", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
 stat("/jdk-11.0.1/bin/../lib/jli/tls", 0x7fff832f29b0) = -1 ENOENT (No such file or directory)
 open("/jdk-11.0.1/bin/../lib/jli/x86_64/libz.so.1", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
 stat("/jdk-11.0.1/bin/../lib/jli/x86_64", 0x7fff832f29b0) = -1 ENOENT (No such file or directory)
 open("/jdk-11.0.1/bin/../lib/jli/libz.so.1", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
 stat("/jdk-11.0.1/bin/../lib/jli", {st_mode=S_IFDIR|0775, st_size=1024, …}) = 0
 open("/jdk-11.0.1/bin/../lib/tls/x86_64/libz.so.1", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

And of course the check part:

mmap(NULL, 1052672, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_STACK, -1, 0) = 0x7fda7bcdc000
 clone(child_stack=0x7fda7bddbfb0, flags=CLONE_VM|CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|CLONE_SYSVSEM|CLONE_SETTLS|CLONE_PARENT_SETTID|CLONE_CHILD_CLEARTID, parent_tidptr=0x7fda7bddc9d0, tls=0x7fda7bddc700, child_tidptr=0x7fda7bddc9d0) = 3660
 futex(0x7fda7bddc9d0, FUTEX_WAIT, 3660, NULLChecked JNI functions are being used to validate JNI usage
 [Dynamic-linking native method java.lang.Object.registerNatives … JNI]
 [Registering JNI native method java.lang.Object.hashCode]
 [Registering JNI native method java.lang.Object.wait]
 [Registering JNI native method java.lang.Object.notify]
 [Registering JNI native method java.lang.Object.notifyAll]
 [Registering JNI native method java.lang.Object.clone]
 [Dynamic-linking native method java.lang.System.registerNatives … JNI]
 [Registering JNI native method java.lang.System.currentTimeMillis]
 [Registering JNI native method java.lang.System.nanoTime]
 [Registering JNI native method java.lang.System.arraycopy]
 [Dynamic-linking native method java.lang.Class.registerNatives … JNI]
 [Registering JNI native method java.lang.Class.getName0]



Using a fast approach to see the heap

Sometimes taking a heap dump will be too long for the production environment, on this cases, it is possible to wait for the load to reduce and then take the heap dump.

However, it is possible to use the quick java diagnostics tool to see the some quick information.

If one does `GC.class_histogram`, which does not depend of +UnlockDiagnosticVMOptions, it can see the list of instances and retention based on the heap usage, example:

GC.class_stats$ jdk-11.0.1/bin/jcmd 1568 GC.class_histogram
  num     #instances         #bytes  class name
 1:       2725548       87217536  java.util.HashMap$Node
    2:        101237       56724056  [B
    3:       2706313       43301008  org.infinispan.server.some.Class <--- some clas takes 433k bytes, so then 43mb
    4:         13443       17843296  [Ljava.util.HashMap$Node;
    5:         21725       16866280  [Ljava.lang.Object;
    6:          8658        5679648  io.netty.util.internal.shaded.org.jctools.queues.MpscArrayQueue
    7:         62530        5015664  [C
    8:         79376        2540032  java.util.concurrent.ConcurrentHashMap$Node

So we can see that the class `org.infinispan.server.some.Class` takes 2706313bytes, so 27mb of the heap, very easily.

This is a very powerful and pretty simple, you can use jcmd to get a heap dump with: `jcmd PID GC.heap_dump` but then you need to set a tool to analyse the Heap itself, like MAT.

Of course this quick usage is not for beginners, you need to know a bit of your application/stack so then one can see how it gets some data. But for a quick investigation it is pretty useful.

I will be presenting some quick jcmd usage in a conference: TDC. This is my second time presenting at the TDC and I’m very glad to share my knowledge on jcmd and live gc observations. In 2014 went to Florianopolis to present about EEG but now I will be presenting in Porto Alegre, RS, Brazil:

TDC 2020 Porto Alegre

I will add slides/presentation here and some extra comments right after, of course.

Protocol buffers


Google’s mechanism for data serialization, Protocol Buffers language neutral. There are three versions of the protocols: proto2, proto3.


Proto is the abbreviation of the file but also is the name of the protocol.


Defining a (using .proto file)

message SearchRequest { <-- similar to python:: define message `SearchRequest`
  required string query = 1;
  optional int32 page_number = 2;
  optional int32 result_per_page = 3;


> Fast ~ binary

> Lightweight ~ binary 😀

> Language independent (if you are prototyping in python and implementing in java)


An example of Protobuf tutorial, given by Ten Loh, where he does a comparison of JSON parsing and Protobufs.


On Infinispan/Data Grid, to develop custom Protostream as default serialization mechanism, this replaces the JBoss Framework.

For customization, there are two possibilities on DG:

1. Generate one given that the serializable classes have the proper annotation (@ProtoField and/or @ProtoFactory). To automatically generate it, one relies Data Grid `protostream-processor` (after adding the proper annotations) that on compile time generate the .proto file.

2. OR you manually  implement a proto message buffer

jcmd baseline


I would like to know exactly where the JVM is spending the memory, almost bit by bit! how to do so?

I already mentioned jcmd on my previous reply. But now, I will show this feature to actually take an compare baselines:

$ jcmd 26283 VM.native_memory 26283: Native Memory Tracking: Total: reserved=3075884KB, committed=1815600KB - Java Heap (reserved=1335296KB, committed=1335296KB) (mmap: reserved=1335296KB, committed=1335296KB) - Class (reserved=1149983KB, committed=118375KB) (classes #20513) (malloc=3103KB #30610) (mmap: reserved=1146880KB, committed=115272KB) - Native Memory Tracking (reserved=5453KB, committed=5453KB) <--- Native memory (malloc=255KB #3577) (tracking overhead=5198KB)

Generating diff:

$ jcmd 26283 VM.native_memory detail.diff 
Native Memory Tracking: Total:
reserved=2984385KB +296KB, committed=1725525KB +296KB -
Java Heap (reserved=1335296KB, committed=1335296KB) (mmap: reserved=1335296KB, committed=1335296KB) -
Native Memory Tracking (reserved=5572KB +79KB, committed=5572KB +79KB) <--- this means that +79Kb were added
(malloc=348KB +63KB #4926 +890) (tracking overhead=5224KB +16KB)

This means that 79Kb were added tot eh native tracking and using a simple baseline one can see even how much the GC increased/decreased the usage.

GC (reserved=135778KB, committed=66846KB)
(malloc=24654KB #37248)
(mmap: reserved=111124KB, committed=42192KB +79KB)

Compiler (reserved=1142KB, committed=1142KB +79KB)
(malloc=1033KB #1307)
(arena=110KB #5)



If one needed to learn/use JUST ONE tool when working with java (not a GUI tool, like Jconsole or JvisualVM) it would be jcmd (MacDonald’s tools, ask it will give you):

$ jcmd <-- list processes
4131 sun.tools.jcmd.JCmd
19353 /home/fdemeloj/jboss-eap-7.2//jboss-modules.jar -mp /home/fdemeloj/jboss-eap-7.2//modules org.jboss.as.standalone -Djboss.home.dir=/home/fdemeloj/jboss-eap-7.2/ -Djboss.server.base.dir=/home/fdemeloj/jboss-eap-7.2//standalone <-- jboss

list all possible features on specific PID:

$ jcmd 19353 help
The following commands are available:
Thread.print <-- thread dump
VM.flags <-- VM flag
VM.system_properties <-- system properties
VM.version <- version
For more information about a specific command use 'help '.

JVM version on the spot:

$ jcmd 19353 VM.version
OpenJDK 64-Bit Server VM version 25.161-b14
JDK 8.0_161

Thread dumps:

$ jcmd 19353 Thread.print
2020-10-13 12:57:03
Full thread dump OpenJDK 64-Bit Server VM (25.161-b14 mixed mode): <--the jvm version
#And the list of threads below
"Attach Listener" #176 daemon prio=9 os_prio=0 tid=0x0000000003505060 nid=0x4d3b waiting on condition [0x0000000000000000]
java.lang.Thread.State: RUNNABLE
"ServerService Thread Pool -- 95" #175 prio=5 os_prio=0 tid=0x00000000071fa4d0 nid=0x4cf0 waiting on condition [0x00007fd86dcf3000]
java.lang.Thread.State: WAITING (parking)
at sun.misc.Unsafe.park(Native Method)
- parking to wait for <0x00000000ae808ad8> (a java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject)
at java.util.concurrent.locks.LockSupport.park(LockSupport.java:175)
at java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.await(AbstractQueuedSynchronizer.java:2039)
at java.util.concurrent.ScheduledThreadPoolExecutor$DelayedWorkQueue.take(ScheduledThreadPoolExecutor.java:1088)
at java.util.concurrent.ScheduledThreadPoolExecutor$DelayedWorkQueue.take(ScheduledThreadPoolExecutor.java:809)
at java.util.concurrent.ThreadPoolExecutor.getTask(ThreadPoolExecutor.java:1074)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1134)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
at org.jboss.threads.JBossThread.run(JBossThread.java:485)

Using just jmcd one can basically compare and even confirm there is a leak and where the leak occurs.

$ jcmd 5492 VM.native_memory
Native Memory Tracking:
Total: reserved=2987852KB, committed=1727872KB
Java Heap (reserved=1335296KB, committed=1335296KB)
(mmap: reserved=1335296KB, committed=1335296KB)
Class (reserved=1151986KB, committed=118666KB)
(classes #20430)
(malloc=3058KB #30925)
(mmap: reserved=1148928KB, committed=115608KB)
Thread (reserved=96759KB, committed=96759KB)
(thread #95)
(stack: reserved=96524KB, committed=96524KB)
(malloc=125KB #482)
(arena=110KB #188)
Code (reserved=254842KB, committed=30790KB)
(malloc=5242KB #8293)
(mmap: reserved=249600KB, committed=25548KB)
GC (reserved=105512KB, committed=105512KB)
(malloc=23192KB #17603)
(mmap: reserved=82320KB, committed=82320KB)

But of course, combined with a `jinfo`, this can be very powerful (i.e. change the JVM runtime behavior) easily:

XX:CICompilerCount=4 -XX:ConcGCThreads=2 -XX:G1HeapRegionSize=1048576 -XX:GCLogFileSize=3145728 -XX:InitialHeapSize=1367343104 -XX:MarkStackSize=4194304 -XX:MaxHeapSize=1367343104 -XX:MaxMetaspaceSize=268435456 -XX:MaxNewSize=819986432 -XX:MetaspaceSize=100663296 -XX:MinHeapDeltaBytes=1048576 -XX:NumberOfGCLogFiles=5 -XX:+PrintGC -XX:+PrintGCDateStamps -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:-TraceClassUnloading -XX:+UseCompressedClassPointers -XX:+UseCompressedOops -XX:+UseG1GC -XX:+UseGCLogFileRotation
[fdemeloj@fdemeloj red-irc]$ jinfo -flag -PrintGCDetails 14865
[fdemeloj@fdemeloj red-irc]$ jcmd 14865 VM.flags
-XX:CICompilerCount=4 -XX:ConcGCThreads=2 -XX:G1HeapRegionSize=1048576 -XX:GCLogFileSize=3145728 -XX:InitialHeapSize=1367343104 -XX:MarkStackSize=4194304 -XX:MaxHeapSize=1367343104 -XX:MaxMetaspaceSize=268435456 -XX:MaxNewSize=819986432 -XX:MetaspaceSize=100663296 -XX:MinHeapDeltaBytes=1048576 -XX:NumberOfGCLogFiles=5 -XX:+PrintGC -XX:+PrintGCDateStamps -XX:-PrintGCDetails -XX:+PrintGCTimeStamps -XX:-TraceClassUnloading -XX:+UseCompressedClassPointers -XX:+UseCompressedOops -XX:+UseG1GC -XX:+UseGCLogFileRotation

With a simple GC.class_histogram, one can see the details of the number of instances per class:

$ jcmd 10197 GC.class_histogram
num #instances #bytes class name
1: 164217 20851032 [C
2: 240025 7680800 java.util.HashMap$Node
3: 162967 3911208 java.lang.String
4: 21784 3194040 [Ljava.util.HashMap$Node;
5: 46342 2609232 [Ljava.lang.Object;
6: 21603 2429160 java.lang.Class
7: 17678 1697088 java.util.jar.JarFile$JarFileEntry
8: 5805 1013840 [B
9: 20079 963792 java.util.HashMap
10: 16127 645080 java.util.LinkedHashMap$Entry
11: 19221 615072 org.jboss.vfs.spi.JavaZipFileSystem$ZipNode <--- zipnode always there!

Sure, jstat, jhat … several others have their intentions and usefulness, just watching the generations with jstat I think is a pretty good deal.

$jdk1.8.0_191/bin/jstat -gc 14512 10000 30
18944.0 17920.0 224.0 0.0 408064.0 75522.4 890368.0 32466.4 72576.0 64107.4 10368.0 8014.6 28 0.191 2 0.147 0.338

I will talk about talking a baseline on the next post.

JNLP Example


Continuing the JNLP part

Let’s create an HelloWorld in jnlp, i.e. an `file.jnlp` that when opened, shows Hello world:

Creating a java swing/awt class:

//Based totally in http://www.mkyong.com :D I hope he allows me
public class TestJnlp {
  static BasicService basicService = null;
  public static void main(String args[]) {
    JFrame frame = new JFrame("Example JNLP");
    JLabel label = new JLabel();
    Container content = frame.getContentPane();
    content.add(label, BorderLayout.CENTER);
    String message = "Yo Gabriel";


    try {
      basicService = (BasicService)
    } catch (UnavailableServiceException e) {
      System.err.println("Lookup failed: " + e);

    JButton button = new JButton("Button");

    ActionListener listener = new ActionListener() {
      public void actionPerformed(ActionEvent actionEvent) {
        try {
          URL url = new URL(actionEvent.getActionCommand());
        } catch (MalformedURLException ignored) {


    content.add(button, BorderLayout.SOUTH);

To compile, don’t forget to add `jnlp.jar` in the classpath,


Create a jar with the file: jar -cf TestJnlp.jar TestJnlp.* And sign the jar with your keystore:

[fdemeloj@fdemeloj JNLP]$ jarsigner -keystore eap7console.jks TestJnlp.jar alias

Don’t forget to consult the JAVAWS syntax.


Just do javaws Test.jnlp:


For troubleshooting, I would suggest Developer Guide JavaWS

The issues you can find:

1. Wrong location

net.sourceforge.jnlp.LaunchException: Fatal: Read Error: Could not read or parse the JNLP file. You can try to download this file manually and send it as bug report to IcedTea-Web team.
	at net.sourceforge.jnlp.Launcher.fromUrl(Launcher.java:487)
	at net.sourceforge.jnlp.Launcher.launch(Launcher.java:287)

2. JAR not signed

Caused by: net.sourceforge.jnlp.LaunchException: Fatal: Application Error: Cannot grant permissions to unsigned jars. Application requested security permissions, but jars are not signed.
	at net.sourceforge.jnlp.runtime.JNLPClassLoader$SecurityDelegateImpl.getClassLoaderSecurity(JNLPClassLoader.java:2481)
	at net.sourceforge.jnlp.runtime.JNLPClassLoader.setSecurity(JNLPClassLoader.java:385)

3. Main-class

Caused by: net.sourceforge.jnlp.LaunchException: Fatal: Initialization Error: Unknown Main-Class. Could not determine the main class for this application.
	at net.sourceforge.jnlp.runtime.JNLPClassLoader.initializeResources(JNLPClassLoader.java:774)
	at net.sourceforge.jnlp.runtime.JNLPClassLoader.<init>(JNLPClassLoader.java:338)
	at net.sourceforge.jnlp.runtime.JNLPClassLoader.createInstance(JNLPClassLoader.java:421)

Don’t try to execute as jar, this will return to you:

[fdemeloj@fdemeloj test_jnlp]$ java -jar TestJnlp.jar 
Error: A JNI error has occurred, please check your installation and try again
Exception in thread "main" java.lang.NoClassDefFoundError: javax/jnlp/UnavailableServiceException
	at java.lang.Class.getDeclaredMethods0(Native Method)
	at java.lang.Class.privateGetDeclaredMethods(Class.java:2701)
	at java.lang.Class.privateGetMethodRecursive(Class.java:3048)

At the end of the day, javaws -help is a friend

To debug:

export JAVAWS_VM_ARGS="-verbose -J-Xdebug -J-Xnoagent -J-Xrunjdwp:transport=dt_socket,address=8787,server=y,suspend=y -Xnofork"

javaws Test.jnlp $JAVAWS_VM_ARGS #this starts Iced Tea Web

But this is for the third part of this series …

SCTP Protocol



Stream Control Transmission Protocol, or SCTP, this is very well explained in Video explaining, by Russell DeLong.

Basically, is a protocol sending streams of data between two points, with a connection previously done, and is also called TCPing.

One of the usages of SCTP, is VoIP particularly to support the telephone system’s Signaling System 7 – SS7, together with voice . SCTP also is intended to make it easier to manage connections over a wireless network and to manage the transmission of multimedia data.

SCTP is a standard protocol (RFC 2960) developed by the Internet Engineering Task Force (IETF).

Similarities with TCP:

1. SCTP manages “reliable transport” (ensuring the complete arrival of data units that are sent over the network) over the Internet’s basically connectionless Internet Protocol (IP), the protocol responsible for moving the data but not for managing whether all the data arrives.

Differences with TCP

2. SCTP ensures the complete concurrent transmission of several streams of data (in units called messages) between connected end points. SCTP also supports multihoming, which means that a connected end point can have alternate IP addresses associated with it in order to route around network failure or changing conditions.

In Java

In Java we have the `com.sun.nio.sctp` that implements SCTP.

import java.net.*;
import java.util.*;
import java.nio.*;
import com.sun.nio.sctp.*; <---- sctp

public class SctpExample
	public static void main(String[] args) throws Exception {
         //Server Channel:
		com.sun.nio.sctp.SctpServerChannel sc = com.sun.nio.sctp.SctpServerChannel.open(); // Open the channel
		com.sun.nio.sctp.SctpChannel rc = null;
		InetSocketAddress localAddr = new InetSocketAddress (InetAddress.getByName (args[0]), Integer.parseInt (args[1]));
         // Server Channel Open   
		sc.open(); //Open
		sc.bind(localAddr); //Bind the local address
		sc.close(); //Close

JNI in Java AND Testing JNI with a few GCs



Although I did some stuff with JNI in Java during my time in schooling, I never wrote it about it here. Nor gave examples.


Java Native Interface is used basically for C/C++ interfaces, in my example, I was doing the processing of some data in Java but the data was generated (compiled, traced, generated) in C/C++ (where I would collect the data as well). (Btw, it is just me or this new way to write in wordpress with blocks sucks, like really)

That being said, the quickest example with JNI is by doing in a JAVA class

public class JNIExample{  //
   static {
   private native void sayHello();
   public static void main(String[] args) {
      new HelloJNI().sayHello(); 

After creating the file, we compile it:

fdemeloj@fdemeloj jni]$ javac JNIExample.java 

Then create the header with javah, and not javac -h as used to be back in Poly times. Write a HelloWorld.c:

#include <jni.h> //import jni header
#include <stdio.h> //Import the stdio
#include "HelloWorld.h" //Insert the header
Java_HelloWorld_print(JNIEnv *env, jobject obj)
     printf("Hello World!\n");

Write a Make file to make the compilation process easy for our Shared library

	@echo "Generating Shared Library"
	cc -I. -I${JAVA_HOME}/include -I${JAVA_HOME}/include/linux -fPIC -shared -o libHelloWorld.so HelloWorld.c HelloWorld.h

	@echo "Cleaning the generated SH files"
	rm *.so

To run the code, just run java (no need for LD_LIBRARY_PATH if you are using -Djava.library.path=.)

[fdemeloj@fdemeloj jni]$ java HelloWorld 
Hello World!

The cool thing is, IT is a shared library totally independent from the JAVA implementation (tcharam, that’s JNI), so then if we want to change the library to this:

 Java_HelloWorld_print(JNIEnv *env, jobject obj)
     printf("After change!\n");

Just recompile the shared library with Make clean;Make. and It’s all good:

[fdemeloj@fdemeloj jni]$ java HelloWorld 
After change!

Next thing is to test the GC collections with JNI, from this link. From the same process, we run Makefile, that takes the java and compile it.

#include <jni.h>
#include <CriticalGC.h>

static jbyte* sink;

JNIEXPORT void JNICALL Java_CriticalGC_acquire(JNIEnv* env, jclass klass, jintArray arr) {
   sink = (*env)->GetPrimitiveArrayCritical(env, arr, 0);

JNIEXPORT void JNICALL Java_CriticalGC_release(JNIEnv* env, jclass klass, jintArray arr) {
   (*env)->ReleasePrimitiveArrayCritical(env, arr, sink, 0);

Running it with Shenandoah we see the difference and how it is so fast:

[fdemeloj@fdemeloj critical-gc]$ make run-shenandoah 
time java -Djava.library.path=. -Xms4g -Xmx4g -verbose:gc -XX:+UseShenandoahGC CriticalGC
[Pause Init Mark, 0.533 ms]
[Concurrent marking 2880M->2988M(4096M), 216.052 ms]
[Pause Final Mark 2988M->920M(4096M), 2.220 ms]
[Concurrent reset bitmaps 922M->926M(4096M), 0.946 ms]
^CCancelling concurrent GC: Stopping VM

I mean, comparing with the other GC’s approaches this Shenandoah doesn’t even stop.


Following this reference

PodCast `Hora do Lancamento`


Hora do Lancamento

Gabriel Alabarse and me, we started a podcast to talk about some of the launches that currently happen: basically SpaceX and RocketLab. We are trying to fight the HUGE amount of MISINFORMATION there is around, particularly in Youtube in Portuguese. Abnormal amount. Big channels, with millions of views spreading conspirational theories.

The explanation for being in Portuguese more than English, is because we have several very good channels that explain the basics for the general population in English, examples: Everyday Astronaut, SpaceXcentric, Scott Manley, 2 The Future Together, SpaceXfans, and the Angry Astronaut, besides the launches from SpaceX, ULA, RocketLab, all content in English.

It is just the first try: